문제 설명
피보나치 수는 F(0) = 0, F(1) = 1일 때, 1 이상의 n에 대하여 F(n) = F(n-1) + F(n-2)가 적용되는 수입니다.
예를 들어
- F(2) = F(0) + F(1) = 0 + 1 = 1
- F(3) = F(1) + F(2) = 1 + 1 = 2
- F(4) = F(2) + F(3) = 1 + 2 = 3
- F(5) = F(3) + F(4) = 2 + 3 = 5
와 같이 이어집니다.
2 이상의 n이 입력되었을 때, n번째 피보나치 수를 1234567로 나눈 나머지를 리턴하는 함수, solution을 완성해 주세요.
제한 사항- n은 2 이상 100,000 이하인 자연수입니다.
n | return |
3 | 2 |
5 | 5 |
피보나치수는 0번째부터 0, 1, 1, 2, 3, 5,... 와 같이 이어집니다.
문제 풀이
피보나치 수를 구현하는 문제이다.
간단하게 이전 두 수를 더해주는 식으로 해결할 수 있다.
이에 대하여, 재귀함수를 사용하는 방식과 행렬을 사용하는 두 가지 방식이 있는데, 행렬을 사용하는 방식으로 문제를 해결하였다.
def solution(n):
fibo = [0,1,1]
for i in range(2,n+1):
x = i%3
fibo[x] = fibo[x-1]+fibo[x-2]
return fibo[n%3]%1234567
공간복잡도가 신경 쓰인다면 다음과 같이 행렬의 길이를 3으로 하여 O(1)로 문제 해결이 가능하다.
'Algorithm > programmers' 카테고리의 다른 글
[Python] 영어 끝말잇기 (1) | 2023.12.19 |
---|---|
[Python] 짝지어 제거하기 (1) | 2023.12.19 |
[Python] 다음 큰 숫자 (1) | 2023.12.19 |
[Python] 숫자의 표현 (0) | 2023.12.19 |
[Python] 이진 변환 반복하기 (1) | 2023.12.19 |